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ABSTRACT 

 Iron deficiency is the most common human nutritional disorder in the world 

today, affecting approximately 2 billon people worldwide, almost a third of the world's 

population. For most of the world's population, plant foods serve as the major source of 

dietary iron. One approach that may contribute towards the solution of iron deficiency is 

the development of crop plants that contain higher levels of bioavailable iron. This 

project focuses on FRO6, a ferric chelate reductase in Arabidopsis thaliana that is 

thought to reduce apoplastic iron for transport across the plasma membrane in leaf cells. 

We hypothesize therefore that FRO6 controls iron content of leaves and provides iron 

needed for photosynthesis, a vital process in plants. In order to examine the proposed 

function of FRO6, we obtained two FRO6 loss-of-function lines, fro6-1 and fro6-2 and 

compared these lines to the WT to determine the role of FRO6 in iron homeostasis in 

plants. fro6-1 contains an insertion in the 8
th

 intron of the gene, while fro6-2 contains an 

insertion in the 8
th

 exon of the gene. We demonstrate that fro6-1 and fro6-2 are both 

homozygous for the insertion. Despite this, fro6-1 and fro6-2 mutants express FRO6 

transcript, possibly because the insertion does not destabilize the transcript. Leaf disks 

prepared from fro6-1 and fro6-2 show a significant decrease in ferric reductase activity 

compared to WT leaf disks, indicating a putative role for FRO6 in reduction of apoplastic 

Fe in leaves. Consistent with the fact that FRO6 is not expressed in roots, fro6-1 mutant 

roots did not show a significant decrease in ferric reductase activity compared to the roots 

of WT plants. 
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The fro6-1 plants show a reduced flowering time as compared to WT plants.  Taken 

together, these data indicate that FRO6 is likely responsible for mediating the reduction 

of ferric iron to ferrous iron at the plasma membrane of leaf cells. 
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CHAPTER 1 

IRON UPTAKE, TRAFFICKING AND HOMEOSTASIS IN ARABIDOPSIS 

thaliana 

For the majority of organisms, iron (Fe) is a necessary micronutrient for 

maintaining life. Iron is important because it serves as a cofactor in proteins that are 

involved in integral cellular functions, such as DNA replication and repair, 

photosynthesis, electron transport, and nitrogen assimilation (Jeong and Guerinot, 2009). 

Iron’s many valuable properties in life arise from the fact that it is a transition metal, 

meaning  it has the ability to change redox state (the accepting and donating of electrons), 

which makes it an ideal candidate for participation in the electron transport chain of 

respiration and photosynthesis. Fe associated with proteins is most commonly found as 

Fe-S clusters or heme groups. 

The properties that make iron so vital for life also make it potentially harmful to 

life. Copious amounts of ferrous iron are harmful, because this form of Fe has the 

potential to generate reactive oxygen species (ROS), via the Fenton reaction. The Fenton 

reaction involves ferrous iron Fe
2+

 interacting with H2O2 and O2 within the cell to 

generate superoxides and/or hydroxyl radicals. These ROS are strong oxidants that can 

cause serious damage to DNA, proteins, and lipids, and therefore greatly decrease the 

viability and integrity of the cell (Halliwell, 1992).  
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Iron is the fourth most abundant element in the earth’s crust. But the majority of 

the iron that is present in the soil is not readily available for use by plants. In particular, in 

aerobic soils at neutral or alkaline/basic pH, Fe has low bioavailability.  

In these soils, Fe forms insoluble oxyhydride polymers that cannot be used by 

some plants (Jeong and Guerinot, 2009). Alkaline soils account for approximately one 

third of all agricultural lands in the world, so Fe limitation is a major problem in 

agricultural settings (Nano and Strathmann, 2006).   

 According to the World Health Organization, iron deficiency is the most 

common nutritional disorder in the world today, affecting over approximately 2 billion 

people (http://www.who.int/nutrition/topics/ida/en/index.html). While plant food serve as 

the major source of dietary iron for humans and other mammals (Connolly et al., 2002), 

plants are generally considered poor sources of iron. More iron rich foods include red 

meat, which is considered a better source of iron versus plants for primarily two reasons. 

First, plant foods contain less iron than meat. Secondly, not only is there less iron in 

plants than in meat but the iron that is present is less bioavailable than the iron found in 

meat (Miret et al., 2003). A diverse plant-based diet or eating meat may be a solution to 

this problem, but these alternatives are not plausible in some parts of the world, due to 

lack of affordability or conflict with religious or cultural beliefs (Miret et al., 2003). 

Since plant-based diets seem to be a significant contributor to this nutritional deficit 

pandemic, there is great interest in bioengineering plants to have enhanced amounts of 

bioavailable Fe in the edible portion of the plant. So, now there is much focus on 
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understanding how plants uptake, transport, and store iron. A clearer understanding of 

these mechanisms may lead to the development of iron-enriched crops that may be used 

to combat iron deficiency anemia. 

To achieve this goal, we must first understand the mechanisms of plant iron 

uptake, transport, and storage. Plants have evolved two strategies to increase acquisition 

of iron from the soil under limiting conditions. Strategy I plants include all non-grasses, 

such as tomato, pea and Arabidopsis thaliana, while Strategy II plants include all the 

grasses, such as rice, maize, wheat and barley. 

Iron Uptake from Soil 

Strategy I 

  When iron is limiting, Strategy I plants employ a three-pronged approach to 

mediate the uptake of iron by the roots (see Figure 1.1). This system is similar to that of 

the iron uptake system found in the yeast Saccharomyces cerevisiae, which uses a two-

step iron uptake strategy, in which Fe
3+

 iron is reduced to Fe
2+

 by FRE1 and then 

transported into the cell by a high affinity transporter (Askwith, 1994).  In Strategy I 

plants, protons (H
+
) are first pumped out into the rhizosphere. This step is crucial, 

because it serves to acidify the soil and make the ferric Fe
3+

 iron more soluble 

(Mukherjee et al., 2006). A one unit drop on the pH scale corresponds to 1000-fold 

increase in Fe solubility (Palmer and Guerinot, 2009). The family of genes thought to be 

responsible for proton extrusion in the rhizosphere is the AHA (Arabidopsis H+ ATPase) 

family. AHA2, along with AHA1 and AHA7 are all up- regulated in iron deficient 

conditions (Palmer and Guerinot, 2009). However, AHA2 is the most likely candidate for 
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extruding protons in the Strategy I mechanism (see Figure 1.1) (Santi and Schmidt, 2009; 

Hindt and Guerinot, 2012).  

 Next, the solubilized ferric iron is reduced to ferrous Fe
2+

 iron by FRO2, which is 

the principle root surface ferric chelate reductase (or Ferric Reductase Oxidase) 

responsible for reduction of rhizosphere iron (see Figure 1.1). FRO2 is the founding 

member of the FRO family and the first member to be fully characterized. The 

Arabidopsis FRO family includes 8 genes. The FRO family of genes was identified due 

to their similarity to the human respiratory burst NADPH oxidase (gp91phox) and to the 

yeast ferric chelate reductase (Yi and Guerinot 1996). Additionally, FRO2 was found to 

map to same locus as frd1, a mutant which lacks ferric reductase activity. FRO2 was able 

to functionally complement or rescue the frd1 mutant phenotype proving that FRO2 

encodes the root surface reductase (Robinson et al., 1999). FRO2 is expressed primarily 

in the roots and is localized to the root plasma membrane (Mukherjee et al., 2006).  

FRO2 is predicted to contain eight hydrophobic domains that form helices that 

span across the membrane. Two of the transmembrane helices (4 and 6), are believed to 

each contain two conserved histidines which are thought to coordinate two heme groups. 

Also, within FRO2 there is a region that is highly conserved in all flavocytochrome 

family members. It is thought that FRO2 oxidizes NADPH in the cytoplasm and then 

transfers the electrons from NADPH through the two heme groups and subsequently 

across the membrane to reduce Fe
3+

 to form Fe
2+

 (Robinson, 1999 ; Schagerlof 2006). 

This step is considered to be the rate-limiting step in iron uptake from the soil (Connolly, 

2003).    
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Finally, ferrous iron is transported across the plasma membrane into the cell via 

IRT1 (iron-regulated transporter 1) (see Figure 1.1) (Connolly et al, 2002; Vert et al. 

2002). IRT1 was discovered using yeast complementation studies (Eide et al., 1996). In 

addition to Fe, IRT1 can transport zinc, manganese, cobalt, and cadmium (which is toxic 

at low levels) as well. 

Expression of IRT1 is crucial for survival of the plant, as evidenced by IRT1 loss-

of-function mutants, which show seedling lethality unless they are provided with excess 

iron (Vert et al., 2002). Experimentally, it has been shown that after 3 days of growth on 

iron deficient medium, expression of IRT1 is greatly increased in the plasma membrane 

of the roots. Additionally it has also been shown that IRT1 mRNA and protein are quickly 

degraded and are undetectable just 12 hours after iron is resupplied to plants (Connolly et 

al. 2002).  

 

Regulation of Strategy I 

FRO2 and IRT1 are both iron deficiency response genes that are controlled by the 

iron responsive transcription factor FIT (FER-like Iron- deficiency- induced transcription 

factor). FIT was discovered in Arabidopsis based on its sequence similarity to the tomato 

FER protein and it is a basic helix-loop-helix (bHLH) transcription factor (Ling 2002; 

Bauer et al, 2007). FIT, like its tomato ortholog, is needed to induce iron-deficiency 

responses (Colangelo, 2004). Under iron-deficient conditions, there is high induction of 

FIT in the roots. Similar to irt1 mutants, fit mutants exhibit chlorosis and do not produce 

seed, unless supplied with exogenous iron (Colangelo and Guerinot, 2004; Vert, 2002). 

Additionally, FRO2 transcript and activity (ferric chelate reduction) are not detectable in 
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the roots of the fit mutant (Colangelo and Guerinot, 2004). On the other hand, IRT1 

shows post-transcriptional regulation by FIT, because in fit, IRT1 mRNA is present, but 

there is no accumulation of the IRT1 protein (Colangelo and Guerinot, 2004). 

Strategy II 

  Strategy II is the mechanism by which the grasses acquire iron and it is 

deemed much more efficient than Strategy I because Strategy II plants can grow on 

calcareous soils (Römheld, 1987).  Strategy II plants respond to iron deficiency by 

synthesizing phytosiderophores (PS) in the roots, and secreting them out into the 

rhizosphere. PSs chelate or bind Fe
3+

 with a very high affinity (Chu et al., 2010). These 

Fe(III)-PS complexes are then transported across the root plasma membrane for use by 

the plant (see Figure 1.1) (Chu et al., 2010).  

Nicotianamine serves as the precursor for all phytosiderophores. Nicotianamine is 

a non-proteinogenic amino acid. Nicotianamine synthetase synthesizes NA by 

condensing three molecules of S-adenosyl methionine. Then, nicotianamine 

aminotransferase converts NA into a 3”-ketoacid. Next DMA synthase (DMAS) reduces 

the 3”-ketoacid (Dell’mour, 2010) to create mucigenic acid (MA) or phytosiderophores. 

The two most common muginenic acids are hydroxymugineic acid (HMA) and 

deoxymugineic acid (DMA) (Dell'mour, 2010). 

After the phytosiderophores have been pumped out into the rhizosphere, they 

chelate ferric iron, and now must be transported back into the plant (see Figure 1.1) 

(Nozoye, et al., 2011). In 2001, Curie et al identified the transporter needed to transport 

the Fe(III)-PS complexes through the characterization of the yellowstripe1 (ys1) mutant 

in maize. A wild type copy of ZmYS1 was transformed into the fet3fet4 yeast strain, 
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which shows reduced growth on iron deficient media, but when transformed with WT 

ZmYS1 and supplied with Fe(III)-DMA, the transformed mutant yeast strain was able to 

grow normally. On the other hand, growth was still limited if the media included Fe(III)-

citrate as the substrate. So, the YS1 transporter is specifically able to transport the 

phytosiderophore bound Fe (Fe-DMA) (Curie, 2001). Furthermore, ZmYS1 was shown to 

be expressed in both iron deficient roots and shoots, indicating that YS1 may play a role 

in iron acquisition from the soil and iron transport to the shoots (Roberts, 2004).   

In Strategy II plants, the biosynthesis of PS and Fe(III)-PS transporter had been 

well characterized, but the actual PS effluxor had remained a mystery. However, recent 

studies have identified this efflux protein (Nozoye et al., 2011). TOM1 of rice and 

HvTOM1 from barley are both members of the major facilitator family (MFS) and both 

were shown to function in efflux of PSs (Nozoye et al., 2011). When expressed in 

Xenopus oocytes, TOM1 and HvTOM1 were both able to efflux 14C-labeled 

deoxymugineic acid but did not transport 14C-labeled NA, which indicates that TOM1 

and HvTOM1 specifically efflux the phytosiderophore DMA (see Figure 1.1). 

Iron Trafficking in Plants 

The FROs- metalloreductases 

In Arabidopsis, there are eight FROs named FRO1-8. Due to their subcellular 

localization and expression patterns and their sequence similarity to FRO2, other FROs 

are believed to function to reduce Fe in different tissue of plants and in different 

subcellular compartments. Ferric reductase activity has been reported in leaves of both 

sunflowers (de la Guardia, MD and Alcantara E., 1996) and Vigna unguiculata 

(Bruggemann et al. 2003), which suggests that Fe is reoxidized after uptake by roots and 
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that Fe needs to be reduced again before entering leaf cells. Only FRO2 and FRO7 have 

been fully characterized, while FRO4 and FRO5 have been partially characterized. FRO7 

localizes to the chloroplast (Jeong et al., 2008) and is highly expressed in all green aerial 

portions of the plant (Mukherjee et al., 2006). Chloroplasts isolated from fro7 loss-of-

function mutants contains 33% less Fe than WT (Jeong and Guerinot, 2009).  Further, 

fro7 chloroplasts show 75% less ferric chelate reductase activity than WT (Jeong et al., 

2008). This indicates that FRO7 is important for providing the large amount of Fe that is 

needed by the chloroplast. 

Recently, two additional FROs have been partially characterized. FRO4 and 

FRO5 are expressed in both roots and shoots, and both localize to the PM (Mukherjee et 

al., 2006; Bernal et al., 2011). Recently, FRO4 and FRO5 have both been shown to be  

FRO4 and FRO5 have been shown to be under control of the transcription factor 

SPL7 (SQUAMOSA Promoter Binding Protein-Like 7), which is the master regulator Cu 

deficiency responses (Bernal, et al., 2011). The promoters of FRO4/FRO5 both contain 

multiple copies of the GTAC core motif, to which SPL7 can bind under Cu deficient 

conditions (Bernal, et al., 2011). A fro4fro5 double mutant is unable to reduce Cu at the 

root surface. Additionally, it was shown that high affinity Cu uptake in the roots first 

requires reduction of Cu
2+

 to Cu
1+ 

by FRO4/FRO5. Taken together, this data indicates 

that FRO4/FRO5 function redundantly as Cu chelate reductases.  

There remain four FROs to be characterized; FRO1, FRO3, FRO6, and FRO8. Of 

these remaining FROs, FRO3 and FRO8 both localize to mitochondria. FRO3 is 

expressed in both the root and shoot tissue of the plant. While FRO8 is expressed mainly 
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in the shoots (Mukherjee et al., 2006).  FRO3 and FRO8 are believed to be responsible 

for reducing Fe for subsequent uptake by mitochondria.  

FRO6 shares a high level of sequence similarity with FRO7 (approximately 95% 

amino acid sequence similarity) (Wu et al., 2006). FRO6 has been shown to localize to 

the plasma membrane in protoplasts (Jeong and Guerinot, 2009). FRO6 is regulated in 

light-dependent manner, with its promoter containing many light responsive elements 

(LREs), such as the I-box, GT1, and GATA motif, which indicates that FRO6 may be 

indirectly involved in photosynthesis, perhaps through delivery of Fe to photosynthetic 

complexes (Feng et al., 2006). Li et al. expressed the Arabidopsis FRO6 gene under the 

control of a 35S promoter in tobacco plants (Li et al., 2010). These transgenic tobacco 

plants showed increased ferric reductase activity in leaves grown under both iron 

sufficient and iron deficient conditions compared to WT plants grown in the same 

conditions (Li et al., 2010). The 35S::FRO6 plants also contained higher levels of Fe 
2+

 

and chlorophyll, compared to WT plants (Li et al., 2010).  Taken together, this data 

suggests that FRO6 is predicted to be responsible for reducing apoplastic iron for 

transport across the plasma membrane in leaf cells. The functional characterization of 

FRO6 is the focus of this thesis, as described in Chap 2. 

Additional Transporters of Iron 

There are additional known transporters of iron that exist in plants, beside IRT1 

and YS1. Arabidopsis IRT2 has high amino acid sequence similarity to the main iron 

transporter in Strategy I plants, IRT1. IRT2 is also able to alleviate the Fe- limited growth 

phenotype of the fet3fet4 yeast strain on iron deficient media, like IRT1. Also like IRT1, 

IRT2 is expressed only in the roots, under iron deficient conditions. However, unlike 
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IRT1, IRT2 does not transport manganese or cadmium. So IRT2 is more specific in its 

transport of metals (Vert, 2002). Additionally, the IRT2 mutant, irt2, does not exhibit any 

signs of iron deficiency. Furthermore, IRT2 cannot rescue the chlorotic and Fe-deficient 

growth phenotypes of the irt1-1 mutant and it is not localized to the plasma membrane 

like IRT1, but instead to vesicles within root epidermal cells (Vert et al., 2009). There are 

many ideas about the precise function of IRT2 and one interesting explanation proposes 

that IRT2 serves as a “proactive adaptation” (MacDiarmid et al. 2003) where IRT2 acts 

to sequester excess Fe that is produced when IRT1 is induced (Vert et al., 2009). 

However more work needs to be done to support this idea (Conte and Walker 2011).  

There is also another family of iron transporter genes called the NRAMPs 

(Natural Resistance Associated Macrophage Protein).  The yeast SMF (Suppressor of 

mif1-1) gene and the mammalian DMT1 are both NRAMP homologs, and both have been 

shown to participate in metal uptake. Arabidopsis contains six NRAMP genes, and half 

of them (NRAMP1, NRAMP3, and NRAMP4) can transport iron when expressed in yeast 

(Curie et al., 2000). Additionally, like IRT1 and IRT2, some NRAMPs are up-regulated 

during times of iron deficiency (Curie et al, 2000).  

Intercellular Transport of Fe in Plants 

Once iron has been taken up into root cells, it undergoes lateral movement from 

the root epidermal cells to the xylem and then is moved to the green above-ground 

portions of the plant, where it is needed in great quantities for photosynthesis. The 

process of transporting iron from the roots to shoots is thought to involve organic acids, 

such as citrate, which bind iron in the xylem and carry it to the shoots (Rellán-Alvarez, 

2010). There are also other chelators of iron. For example, NA, which binds both Fe
2+
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and Fe
3+

, is present in both Strategy I and Strategy II plants, and these Fe-NA complexes 

are found in the vasculature of plants (Chu et al., 2010). Iron is transported to the root, 

flower, seeds, and other parts of the plant via the phloem (Palmer and Guerinot, 2009). 

Vascular Transport of Fe  

Citrate is thought to be the major binder of iron in the xylem because the pH of 

xylem favors Fe(III)-citrate complexes (Curie et al., 2009).  Additionally, there is 

evidence that Fe moves from roots to shoots as Fe(III)-citrate (Tiffin, 1966). Analogs of 

xylem sap show that Fe and citrate co-migrate in paper electrophoresis. 

Indeed,"Theoretical calculations that take into account the known metal chelators 

(organic acids and amino acids including nicotianamine) ... suggest that citrate will be the 

major complexor of Fe in the xylem” (Conte and Walker 2011). Recently, Fe-complexes 

that occur in nature were identified as oxo-bridged tri-Fe(III), tri-citrate (FeCit3) using 

HPLC-ICP-MS to analyze the xylem sap of tomatoes (von Wiren et al., 1999; Rellan-

Alvarez et al., 2008; Conte and Walker, 2011). The presence of Fe(III)-complexes  in 

xylem exudates suggests that Strategy I plants reoxidize the reduced Fe back to the ferric 

form once it crosses the plasma membrane of root epidermal cells.   

Two mutant lines have provided significant insight into transport of Fe within the 

xylem. The chloronerva mutant, which lacks the single NAS gene that encodes 

nicotianamine synthase and thus lacks NA synthesis, shows elevated levels of citrate in 

the xylem sap (Pich et al., 2001). The Arabidopsis frd3 mutant contains less xylem citrate 

and accumulates Fe at high levels in the root, which indicates that FRD3 is required for 

the proper transport of Fe across long distances (Rogers and Guerinot 2002). FRD3 

(ferric reductase defective) is a member of the MATE (Multidrug and toxin efflux) 
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protein family and is thought to function in the efflux of citrate to the xylem. It is 

localized to the root pericycle and cells around the vasculature.  Thus, FRD3 is thought to 

release citrate into the root xylem, where it complexes with Fe so that it may be 

translocated to the aerial portions of the plants (Rogers and Guerinot, 2002). FRD3 is also 

strongly expressed in the seed and flower, indicating a possible role in efflux of citrate to 

the apoplast for transport of iron in the xylem of flowers (Roschzttardtz et al., 2011). In 

the Arabidopsis frd3 mutant, iron accumulates in the cell directly next to the vasculature, 

where FRD3 is localized, suggesting that there is blockage of Fe entering the vasculature 

(Green and Rogers, 2004).  

When FRD3 was expressed in the heterologous Xenopus oocyte system, it was 

able to facilitate efflux of citrate. In rice, there is FRD3-like gene FRDL1, (FRD3-like1), 

that has 57% sequence similarity to FRD3 and has an analogous function to FRD3 and 

similar phenotypes to the frd3 mutant (Yokosho et al., 2009).  Although Strategy I and 

Strategy II plants have differing Fe uptake mechanisms from the rhizosphere, both types 

of plants seem to share similar Fe translocation systems (Conte and Walker, 2011).   

At this time, the mechanism for loading iron into the xylem is not yet entirely 

known. However, recently, a likely candidate has been identified and the name of this 

protein is FPN1 (ferroportin). In Arabidopsis, the ferroportin family includes three genes: 

FPN1/IREG1 which localizes to the plasma membrane (Morrissey et al., 2009), 

FPN2/IREG2, which localizes to the vacuolar membrane (Schaaf et al., 2006; Morrissey 

et al., 2009), and FPN3/MAR1/RTS3/IREG3, which localizes to the chloroplast envelope 

(Conte et al., 2009). In mammals there are ferroportins called Metal Transporter Protein 1 

and Iron Regulated protein 1 (IREG1) that facilitate efflux of Fe from macrophages and 
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hepatocytes (Muckenthaler et al., 2008; Conte and Walker 2011). The functional activity 

of FPN1/IREG1 could not be determined, because FPN1 protein does not localize to the 

plasma membrane in the yeast heterologous system (Schaaf et al., 2006). But the closely 

related FPN2 can transport Ni, Co, and Fe from the cytoplasm to the vacuole (Morrissey 

et al., 2009). FPN1 is localized to the “stele of the root, root-shoot junctions of seedlings 

and leaf veins, indicating a role in efflux into apoplast and or xylem” (Morissey et al., 

2009).  

Transport of Fe within the Shoot  

Once Fe travels to the leaf apoplast via the xylem, it must be transported across 

the leaf plasma membrane (Conte and Walker, 2011). The importance of citrate in the 

proper transport of iron in xylem has been demonstrated in the frd3 mutant, which 

accumulates iron in the extracellular space, as noted above (Green and Rogers, 2004). 

However the role that citrate plays in xylem unloading remains a mystery. In 

Arabidopsis, members of the Yellow Stripe-Like (YSL) family, which transport Fe
2+ 

nicotianamine complexes, are thought to be the principal "mediators" of uptake of Fe 

from the xylem (Conte and Walker, 2011). 

 Fe is thought to be transported through the phloem bound to nicotianamine (NA). 

NA is synthesized by both Strategy I and Strategy II plants and is a precursor to the PS 

found in the Strategy II grasses. Thus NA is structurally similar to PS, so it can chelate 

Fe
3+

, along with other metal species including Fe
2+

, Cu
2+

, Ni
2+

, Co
2+

, Mn
2+

, and Zn 
2+

 

(Chu et al., 2010). NA is found in both shoots and roots (Stephan et al., 1987; Conte and 

Walker, 2011) and both xylem and phloem (Schmidke and Stephen, 1995; Pich and 

Scholz, 1996; Conte and Walker, 2011). 
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 Identification of the tomato NA synthesis deficient mutant, chloronerva, 

demonstrated the importance of NA in iron translocation. The chloronerva mutant shows 

severe interveinal chlorosis of young leaves (Stephan and Grun, 1989; Higuchi, 2001). 

The interveinal chlorosis phenotype indicates that the plant is iron deficient and the 

mutant shows constitutive induction of the iron deficiency uptake response (i.e. 

upregulation of AHA2, FRO2, and IRT1) (Becker et al, 1992). However, the mature 

leaves surprisingly contain an excess of iron (Becker et al. 1992). So the fact that there is 

more iron in the mature leaf tissue and less Fe in the younger tissues suggests that NA 

plays a role in proper distribution of Fe (Conte and Walker, 2010).    

 As noted above, when Fe is traveling through the phloem it is believed to 

be chelated or bound by NA (Conte and Walker, 2011). The YSL family of proteins is 

thought to be responsible for loading and unloading of these Fe-NA complexes. The 

YSLs are a subfamily of oligopeptide transporters (OPT) (Curie et al, 2009). These genes 

were identified based on their high sequence similarity to YS1, the PS-Fe(III) transporter 

in Strategy II plants (Curie et al, 2009). YSLs are expressed in a wide variety of plants 

including gymnosperms, mosses, lycopods, ferns, monocots and dicots (Conte and 

Walker, 2011). YSLs have been shown to transport various metal-NA chelates as 

substrates (DiDonato et al., 2004, Koike et al., 2004; Roberts et al., 2004; Schaaf et al., 

2004; Lejean et al., 2005; Murata et al., 2006; Gendre et al., 2007; Harada et al., 2007). 

YSL1 is a well-characterized member of the YSL family. YSL1 is expressed in 

the shoot vasculature, siliques, pollen grains and maturing seeds (Lejean et al., 2005). 

The ysl1 mutant contains less iron in its seeds and these seeds show a reduced 

germination rate on iron-deficient medium, which indicates that YSL1 is needed to load 
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iron into the seed (Waters et al., 2006). Additionally, another member of the YSL family, 

YSL3 also localizes to the shoot vasculature and pollen grains (Waters et al., 2006). The 

double mutant ysl1, ysl3, contains less Fe, Cu, and Zn in leaves, which indicates roles for 

YSL1 and YSL3 as metal transporters in leaves (Waters et al., 2006). Expression of 

YSL1, YSL2, and YSL3 is suppressed under iron deficiency. The opposite holds true for 

the iron uptake genes (YS1, FRO2 and IRT1). Taken together, these data suggest that the 

YSL family is responsible for maintaining iron homeostasis via intercellular transport of 

Fe-NA complexes (Conte and Walker, 2011). 

Intracellular Iron Transport 

Once Fe has reached the appropriate tissue and crossed the plasma membrane, it 

must be distributed to various subcellular compartments to be used and/or stored. Two 

major organelles that require large amounts of Fe are the chloroplast and mitochondria 

(Conte and Walker, 2011). In addition, iron may be stored in the vacuole (Kim et al., 

2007).  

The Chloroplast 

Almost 90% of leaf cell Fe is found in the chloroplast. Much iron is found here, 

because this is the organenelle where photosynthesis takes place. Many photosynthetic 

processes, complexes, and proteins require Fe, including the photosynthetic complexes, 

chlorophyll synthesis, and heme (Kim and Guerinot, 2007). Additionally, Fe is needed as 

a co-factor in the enzyme Fe-SOD, which prevents oxidative damage by converting ROS 

to H202, reducing the number of harmful superoxides that are normally formed during the 

photosynthetic electron transport chain (Kim and Guerinot, 2007).  
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Ferritin in plants, much like ferritin found in animals, is involved in storage of iron. Plant 

ferritins can store up to 4500 atoms of Fe and are localized to the plastids (chloroplast) 

(Hintze and Theil, 2006). In Arabidopsis, there exist four FER genes. FER1 is believed to 

be involved in senescence, because the age-dependent rate of senescence was increased 

in the fer1 mutants, due to toxic accumulation of ROS. All four ferritins (FER1-4) 

localize to the chloroplast and have been shown to function primarily to protect the plant 

from oxidative damage rather than in storage of Fe (Ravet, et al., 2008).  

Recently, transport of Fe into the chloroplast has been elucidated. Transport into 

the chloroplast involves two main components: FRO7 and PIC1. As noted above, FRO7 

belongs to the FRO family of ferric chelate reducatses. It is highly expressed in all green 

aerial tissues and is localized to the chloroplast membrane. In Arabidopsis, fro7 mutants 

germinate on alkaline soils, but quickly die (Jeong et al., 2008). Chloroplasts isolated 

from fro7 plants show 75% less ferric chelate reductase activity than WT. They also have 

less iron than WT chloroplasts, which indicates that FRO7 plays a major role in acquiring 

Fe for the chloroplasts (Jeong et al., 2008).  

In recent years, the chloroplastic Fe transporter has been identified as PIC1 

(Permease in Chloroplast 1). PIC1 is a permease-like protein in cyanobacteria (Duy, et 

al., 2007). PIC1 was first identified as a part of a “protein-conducting channel” on the 

inner-envelope of the chloroplast (Teng, Y et al., 2006). However it was shown to be able 

to complement the yeast iron uptake mutant fet3fet4 . Additionally, the pic1 mutant 

shows phenotypes that are indicative of compromised iron transport. For instance, the 

pic1 mutants are severely chlorotic and have higher levels of ferritins (Duy et al., 2007). 
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It is not known whether or not PIC1 transports Fe
2+

 or Fe
3+

 or some other molecule, and 

the precise role of PIC1 remains unclear (Jeong and Guerinot, 2009). 

 Mitochondria 

Mitochondria, like chloroplasts, require a high amount of iron (Briat, 2007). As 

previously mentioned, iron serves as a cofactor in the electron transport chain of 

respiration. Additionally, Fe-S clusters are constructed in mitochondria, as well as in 

chloroplasts. FER4 dually localizes to mitochondria and to the chloroplast and is thought 

to have the same function as the chloroplastic ferritins FER1, FER2, and FER3, which is 

to store iron safely in a bioavailable form and to therefore protect cells from oxidative 

stress (Taratino, 2010). In recent years, the transporter responsible for transporting Fe 

into the mitochondria has been identified. MIT was discovered using through screening 

of a T-DNA (transfer DNA) library to identify rice T-DNA lines that exhibited iron 

deficiency symptoms. MIT is a member of the mitochondrial solute carrier family (MSC) 

and members of this family are known to localize to the inner mitochondrial membrane 

and also to transport a diverse variety of substrates, including Fe (Kunji and Robinson, 

2006). MIT function is essential for survival, as homozygous knockouts for MIT are not 

viable (Bashir et al., 2011). MIT was able to rescue the growth phenotype of 

Δmrs3Δmrs4 yeast, which has defective transport of iron into the mitochondria. The MIT-

knockdown, mit-2, shows a reduced growth phenotype, although it accumulates excess 

iron. Moreover, there was a decrease in aconitase activity in both the cytosol and 

mitochondria, which indicates that Fe-S cluster formation is compromised in mit-2 plants. 

Taken together, these results point to MIT as the protein responsible for transporting iron 

into the mitochondria of rice (Bashir et al., 2011).     
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Vacuoles 

The vacuole is a critical compartment for storage and sequestration of iron within 

plants (Lanquar et al., 2005; Kim et al., 2006). VIT1 has been shown to transport Fe into 

vacuole (Kim et al., 2006). Expression of VIT1 in yeast was able to rescue the yeast 

ccc1(Ca
2+

cross complementer 1)  mutant, because there was an increase in the amount of 

Fe in the vacuoles, which suggests that VIT1 functions in transporting iron into the 

vacuole (Kim, et al., 2006). VIT1 is expressed highly during the development of seeds, 

and vit1 mutants cannot survive under Fe-limiting conditions, such as alkaline soil (Kim 

et al, 2006). 

Remobilization of Fe from the vacuole is another important part of iron 

metabolism in plants. Two members of the NRAMP family have been shown to aide with 

this process. NRAMP3 and NRAMP4 both export Fe from the vacuoles (Kim et al, 

2006). Both NRAMP3 and NRAMP4 are up-regulated under iron deficient conditions 

(Lanquar et al, 2005). Neither nramp3 nor nramp4 single mutants show phenotypes, 

when grown on iron deficient medium. However, the double mutant nramp3nramp4 does 

not germinate under iron deficiency (Lanquar et al., 2005). Interestingly, the mutants do 

not contain less iron that WT seeds, but electron microscopy shows that nramp3nramp4 

plants accumulate Fe in the vacuole, suggesting that NRAMP3 and NRAMP4 play a role 

in exporting Fe from the vacuole (Jeong and Guerinot, 2009).  

A thorough understanding of the mechanisms that regulate metal homeostasis is 

critical to generating iron-enriched biofortified crops. This goal will be attainable by 

continual in- depth study and analysis of the ferric reductase oxidases, transporters, 

chelators and regulatory proteins involved in metal metabolism. In recent years, much 
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progress has been made to elucidate the molecular mechanisms of Fe homeostasis, but 

much remains unknown. The focus of this thesis is the role of FRO6 in reduction of Fe by 

leaf cell. 
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Figure 1.1 Strategy I versus Strategy II Iron Uptake Mechanism. (Adapted from Kobayashi and Nishizawa, 

2012). Strategy I plants (all non-graminaceous dicots) use a Reduction Strategy, where Fe is reduced by FRO2, 

then taken up into the roots by IRT1. Strategy II plants (grasses) use a “Chelation” based strategy, where 

phytosiderophores are released into the soil and directly chelate the Fe present. The Fe-phytosiderophore 

complexes are then taken up into the plant. 
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CHAPTER 2: Characterization of the Role of FRO6 in Metal 

Homeostasis in Arabidopsis thaliana 
 

Introduction 

For the majority of organisms, iron (Fe) is essential for life. This is because it acts 

as a cofactor in many proteins involved in replication and repair of DNA, photosynthesis, 

and respiration (Jeong and Guerinot, 2009). Although iron is required for many cellular 

processes, over accumulation of iron generates toxic hydroxyl radicals via the Fenton 

reaction (Halliwell and Gutteridge, 1992). Even though iron is abundant in the soil, it is 

not readily available for use by plants in aerobic soils at neutral or basic pH, where it 

forms insoluble oxyhydroxide polymers (Jeong and Guerinot, 2009). Alkaline soils 

account for approximately one third of all agricultural lands in the world, so iron 

deficiency is a major problem that we face in the world today (Nano and Strathmann, 

2006). Indeed, plants grown under iron deficient conditions often exhibit yellowing or 

chlorosis of the leaves (Briat and Lobreaux, 1997) and reduced crop yields (Guerinot and 

Yi, 1994). According to the World Health Organization, iron deficiency anemia is the 

most common nutritional disorder in the world today, affecting over approximately 2 

billion people. Plants serve as the major source of dietary iron for humans and other 

mammals (Connolly et al., 2002). So, there is great interest in understanding the 

mechanisms by which plants uptake and regulate iron.  

Plants have evolved two mechanisms to combat Fe limitation (Guerinot and Yi, 

1994) (see Figure 1.1).
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Strategy I plants include all non-grasses, such as tomato, soybean and the model 

plant Arabidopsis thaliana, while Strategy II plants include all the grasses, including rice, 

maize and wheat. When iron is limiting, Strategy I, plants employ a three-step process to 

mediate the uptake of iron in the roots. In the first step, protons are pumped out into the 

rhizosphere by an ATPase; this step serves to acidify the soil and make the ferric (Fe
3+

) 

iron more soluble (Vert, 2002; Eide et al., 2006; Connolly and Walker, 2008). Then, the 

solubilized ferric iron is reduced to ferrous (Fe
2+

) by FRO2 (ferric reductase oxidase), 

which is the principle root ferric chelate reductase and a member of the FRO family of 

genes. Finally, ferrous iron, is transported across the plasma membrane into the cell via 

IRT1 (iron-regulated transporter 1) (Eide et al., 1996; Vert et al., 2002; Connolly et al, 

2002). Strategy II is deemed much more efficient, than Strategy I. Strategy II plants 

respond to iron deficiency by synthesizing phytosiderophores (PS) in the roots, and 

secreting them out into the rhizosphere. PSs chelate or bind Fe
3+

 with a very high affinity 

(Chu et al., 2010). These Fe(III)-PS complexes are then transported across the plasma 

membrane by the YS1 (yellow stripe 1) iron transporter (Chu et al., 2010) (see Figure 

1.1). 

In Strategy I plants, IRT1 is the transporter that is responsible for transporting 

iron and other bivalent metal cations across the plasma membrane. Its expression is 

crucial for survival of the plant, as the irt1 loss-of-function line displays seedling lethality 

(Vert et al., 2002). Experimentally, it has been shown that after 3 days of plants growth 

on iron deficient medium, expression of IRT1 is greatly increased. Additionally it has 

also been shown that IRT1 mRNA and protein are quickly degraded, after resupply of Fe 

(Connolly et al. 2002).  
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Similarly, FRO2 is also transcriptionally up regulated under iron deficiency 

(Connolly et al., 2003). FRO2 is the main ferric chelate reductase responsible for 

converting ferric iron to ferrous iron, a pivotal and rate limiting step for transport of iron 

across the plasma membrane (Grusak et al., 1999). Plants which lack FRO2 exhibit 

severe chlorosis, indicating the importance of this gene in Strategy I plants (Robinson et 

al., 1999). FRO2 is expressed primarily in root epidermal cells and is localized to the 

plasma membrane in these cells (Connolly et al, 2003). 

 

The FROs constitute a family of genes thought to be responsible for reducing iron 

and/or copper in various parts of the plant. The Arabidopsis FRO family includes 8 

genes, named FRO1-8 (see Table 2.1). When iron is limiting, there is transcriptional 

induction of some of the FRO genes and studies have shown that different FROs are 

expressed and localized in different parts of the plant (Wu et al., 2005; Mukherjee et al., 

2006; Jeong et al., 2008; Bernal et al., 2012). Recently, three FROs have been 

functionally characterized. In 2008, Jeong et al. showed that FRO7, which is expressed 

highly in all green tissue, localizes to the chloroplast and plays a role in acquiring iron in 

chloroplast. FRO7 is essential for proper functioning of photosynthesis in young 

seedlings under iron deficient conditions (Jeong et al., 2008). On the other hand, FRO4 

and FRO5 are expressed in the shoots and roots and localized to the plasma membrane. 

Recently, these genes have been shown to be instrumental in maintaining Cu 

homeostasis, because they reduce Cu for high affinity uptake of Cu by roots. 

Furthermore, transcription of FRO4 and FRO5 is under the control of the transcription 

factor that controls Cu deficiency responses, SPL7 (Bernal et al, 2011).  
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There are 4 FROs that have not been characterized yet. FRO3 and FRO8 are 

thought to be localized to the mitochondria (Jeong and Connolly, 2009). FRO3 is 

ubiquitously expressed throughout the plants, while FRO8 is only expressed in senescing 

leaves (Mukherjee et al., 2006). FRO3 and FRO8 are both thought to be involved in the 

reduction of iron that is needed for use by the mitochondria. FRO1 is not highly 

expressed in any tissue tested (Mukherjee, et al., 2006, Wu et al., 2005). 

This work focuses on functional characterization of another uncharacterized FRO, 

FRO6. FRO6 is localized to the PM and expressed at a high level in all green aerial 

portions of the plant (Mukherjee et al., 2006; Feng et al., 2008; Jeong et al., 2008) 

Interestingly, the FRO6 promoter contains multiple, light responsive elements (LREs), 

including a GATA motif, the I-box, and GT1, thus FRO6 is regulated in a light- 

dependent manner (Feng H et al., 2006). Overexpression of FRO6 in transgenic tobacco 

plants resulted in increased ferric reductase activity in the shoots, but not the roots of 

plants grown on iron sufficient and deficient media, with ferric reductase activity being 

higher in iron deficient transgenic plants (Li et al., 2010).  Additionally, these 35S::FRO6 

transgenic plants showed increased levels of chlorophyll and Fe.  

As of now, the mechanism for how Fe is taken up across the PM of the root is 

well understood: 1. AHA2 lowers pH of soil to solubilize Fe, 2. FRO2 reduces the 

solubilized Fe
3+ 

to Fe
2+

, and 3. IRT1 transports the Fe
2+

 across the root PM, as described 

above. However, the mechanism for how Fe is taken up across the PM of the shoot is not 

well understood. 

Previous studies support the idea that a ferric reductase is required for Fe uptake 

by leaf cells. For example, ferric reductase activity has been reported in leaves of both 
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sunflowers (de la Guardia, MD and Alcantara E., 1996) and Vigna unguiculata 

(Bruggemann et al. 2003). The presence of ferric chelate reductase activity indicates that 

some percentage of Fe is likely oxidized back to its Fe
3+ 

form after entry into the root 

cells and therefore needs to be reduced again before entering the leaf cells. The actual 

metalloreductase responsible for providing the Fe needed for photosynthesis has been a 

mystery for quite a while and the presence of the LREs in the FRO6 promoter suggests 

that it may be responsible for providing the Fe needed for photosynthesis (Feng et al., 

2008). Moreover, the increased ferric reductase activity and Fe content of FRO6 

overexpressing transgenic tobacco plants provide strong evidence that FRO6 is indeed 

the actual FRO responsible for providing the iron needed for transport across the leaf PM 

(Li et al, 2010). Here, I provide additional evidence to support this hypothesis through the 

analysis of fro6 loss-of-function lines. 
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 Expression 

Pattern 

Localization Function 

FRO1 Unknown Unknown Unknown 

FRO2 Roots PM Reduction of 

Fe at root soil 

interface 

FRO3 Roots and 

shoots 

Mitochondri

a  

Postulated 

reduction of Fe for 

mitochondria 

FRO4 Roots and 

shoots 

PM Reduction of 

Cu for high affinity 

uptake in the roots 

FRO5 Roots and 

shoots 

PM Reduction of 

Cu for high affinity 

uptake in the roots 

FRO6 Shoots PM Postulated 

reduction of Fe for 

transport across leaf 

PM 

FRO7 Shoots Chloroplast Reduction of 

Fe for chloroplast 

FRO8 Shoots  Postulated 

reduction of Fe for 

mitochondria 

Table 2.1 Arabidopsis FRO Family Summary  
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Materials and Methods 

Arabidopsis lines 

Wild type Arabidopsis (ecotype Columbia gl-1) was used as a control for all 

experiments. Two FRO6 loss-of-function mutants fro6-1 (SALK_085659) and fro6-2 

(SALK_099597C), were ordered from the SALK Institute Genomic Analysis Lab 

(SIGNAL). fro6-1 has a T-DNA insertion in the 8
th

 intron (see Figure 2.1A), while fro6-2 

has a T-DNA inserted in the 8
th

 exon (see Figure 2.2A). 

Genotyping  

The fro6-1 and fro6-2 lines were backcrossed to the WT Col gl-1 twice. To 

confirm that the fro6-1 and fro6-2 knockouts are homozygous, plants were genotyped 

using primers specific to FRO6 along with primers specific to the T-DNA insertion. The 

primers used for genotyping are as follows: FRO6KOLP Forward, FRO6KO Reverse, 

and LBB1 (see Table 2.2). PCR was stopped after 35 cycles. 

DNA Extraction  

 In order to extract DNA, a single leaf was selected from a single plant and 

ground in an eppendorf tube, using 400 µl of extraction buffer (200 mM Tris, pH 7.5, 250 

mM NaCl, 25mM EDTA, and 0.5% SDS). Samples were centrifuged at 13,000 rpm for 

two minutes. Then, 300 µl of the supernatant was removed and mixed with 300 µl of 

isopropanol and the samples were centrifuged again at 13,000 rpm for 5 minutes. 
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 Next, the supernatant was discarded and the pellet was washed with 70% ethanol and 

allowed to dry. The pellet was resuspended in 50 µl of water and used for genotyping 

assays (Klimyuk et al., 1993). 

Transcript Analysis 

To verify that the fro6-1 and fro6-2 mutants do not contain any FRO6 transcript, 

semi-quantitative reverse transcriptase-PCR (RT-PCR) was performed. The primers used 

are specific to the FRO6 3΄UTR. It was necessary to design primers that correspond to 

the 3´UTR, because the sequence of FRO6 is highly homologous to the FRO7 gene and 

the greatest degree of variability between the two genes is in the 3´UTR. RNA was 

extracted from the shoots of wild type Arabidopsis seedlings grown for 14 days on 

Gamborg’s B5 medium (Sigma-Aldrich, St. Louis). cDNA was synthesized from this 

RNA following the manufacturer’s protocol (Superscript First-Strand Synthesis from 

PCR Kit, Life technologies/Gibro-BRL). Actin cDNA was used as a control when doing 

semi-quantitative RT-PCR. In RT-PCR, the polymerase chain reaction (PCR) was 

stopped at particular intervals, the sample was then collected, and PCR was resumed, 

after each pause. In addition to the WT control, a No RT control was included, to ensure 

that there was no genomic DNA present in the sample. Moreover, a No cDNA control 

was used to ensure the absence of contamination of the reagents used to prepare the PCR 

samples. For transcript analysis of FRO6, samples were stopped at the 29th, 32th, and 

35
th

 cycles. For actin transcript analysis, the PCR reaction was stopped at the 23
th

, 26
th

, 

and 29
th

 cycles.  
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Leaf Disc Ferric Reductase Activity 

Leaf discs (de la Guardia, 1996) from 3-4 week old seedlings (grown on soil)were 

submerged in assay solution and were kept in light. Leaves of the same age were selected 

from 8 different plants. Preparation for leaf discs required the use of the “Taped-

Arabidopsis Sandwhich” method in order to peel off the leaf epidermis to expose the PM 

(Wu et al., 2009). A hole punch was used to cut out the leaf discs, while the leaves are 

still attached to the tape. Then, the leaves were completely submerged in 300 ul of assay 

solution. The assay solution used contains 0.1mM Fe(III)-EDTA with 0.3mM Ferrozine. 

Absorbance was then measured at 562 nm at 5 minutes, 15 minutes, 30 minutes 45 

minutes and 60 minutes. Absorbance data was normalized to leaf disc weight. A student’s 

t-Test was conducted to determine statistical significance.    

Root Ferric Reductase Activity  

Ferric reductase assays were conducted on roots of plants grown on Gamborg’s 

B5 medium (Sigma-Aldrich, St. Louis) for 12-14 days, then transferred to iron sufficient 

(50µM Fe(III)-EDTA) or iron deficient (300 µM Ferrozine)  medium for an additional 

three days. Roots were submerged in the assay solution containing 0.1mM Fe(III)-EDTA 

and 0.3mM Ferrozine. Then the plants were placed in the dark and the absorbance was 

then measured at 562 nm at 0, 20, 40, 60 minutes). The absorbance data was normalized 

to fresh root weight (Yi and Guerinot, 1996. Ten replicates of each line were used. A 

student’s t-Test was conducted to determine statistical significance. 

Flowering time  

Flowering time was measured for fro6-1 and WT Col g1-1 plants, as a control. 

Plants were grown in long-day, short-day, constant light, and high light. Flowering time 
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was measured by counting the total number of leaves when the initial flowering bud 

appeared (cotyledons were not included). 10 replicates for each line were used. A 

student’s t-Test was conducted to determine statistical significance (Clarke et al., 1995).    

Root Growth Assay  

A root growth assay was used to measure the effects of iron deficiency on the 

growth of roots of fro6-1 mutants. Plants were grown for 5 days on Gamborg’s B5 

medium (Sigma-Aldrich, St.Louis) supplemented with 2% sucrose, 1mM MES, and 0.6% 

agar, pH 5.8 (Mukherjee, et al., 2006). Then the 5 day old seedlings were transferred to 

either iron sufficient (50 µm Fe (III)- EDTA) or iron deficient (300 µM Ferrozine) plates 

(Yi and Guerinot, 1996). The plates were positioned vertically in the growth chamber. 

Col g1-1 plants were used as controls. Measurements were taken every day for six days 

(Connolly et al., 2002). 12 replicates of each line were used. A student’s t-Test was 

conducted to determine statistical significance.    

Chlorophyll Content 

Plants were grown on Gamborg’s B5 medium (Sigma-Aldrich, St.Louis) for 14 

days, and then transferred to either iron sufficient (50µM Fe (III-EDTA) or iron deficient 

(300 µM Ferrozine) medium for an additional three days. Col g1-1 plants were used as 

controls. Chlorophyll content was measured using a protocol adapted from Arnon (1949), 

in which .1 g of tissue was ground in an eppendorf in 1 ml of 85 % acetone. The 

homogenate was spun down and the supernatant absorbance was read at 663 and 644 nm. 

Chlorophyll content was calculated as previously described (Arnon, 1949). Eight 

replicates of each line were used. A student’s t-Test was conducted to determine 

statistical significance.   
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PRIMER SEQUENCE 5’-3’ 

 FRO6KOFORWARD 5'-TTCCGAAAATATATGGGCAGC-3' 

 

FRO6KOREVERSE 5'-CGAGCCTCGCTTGGTACGTC-3'  

 

 LBB1 5'-GCGTGGACCGCTTGCTGCAACT-

3' 

FRO6RTF-3 5'-

TGGAAACAGCTATGGTTGATATG-3' 

FRO6RTR-3  5'-

TGTCCAATGTAGAAACACCAACA-3' 

FRO6RTF(HINDIII) 5'-CTTATGGCCATGAATCTCCATA-

3' 

FRO6RTR(HINDIII) 5'-AGCTTGACAGAAGGATGCAC-3' 

Table 2.2 Primer Sequences Primer sequences used for RT-PCR and PCR 
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RESULTS 

Previous work has shown that FRO6 is highly expressed in all green aerial 

portions of plants (Mukherjee et al., 2006; Wu et al., 2005; Feng, et al., 2006; Li, et al., 

2010) and is localized to the PM (Jeong et al., 2008). In addition, it has been shown that 

FRO6 encodes a protein that displays ferric reductase activity using a yeast system (Wu 

et al., 2005; Jeong et al., 2008). This data has led us to hypothesize that FRO6 is ferric 

chelate reductase involved in Fe homeostasis, specifically providing reduced Fe for 

transport across the leaf plasma membrane that is needed for important biological 

processes such as photosynthesis. 

Mutants (fro6-1 that contains a T-DNA insertion in the 8
th

 intron) (see Figure 

2.1A) and (fro6-2 that contains a T-DNA insertion in the 8
th

 exon) (see Figure 2.2A) of 

the Arabidopsis FRO6 gene were obtained from the SALK Institute Genomic Analysis 

Laboratory collection. The inserts were confirmed using sequence analysis at the 

University of South Carolina. PCR genotyping was used to identify homozygous mutant 

plants (see Figure 2.1B and Figure 2.2B).  

However, semi-quantitative RT-PCR transcript analysis showed that these 

mutants express transcript comparable to WT (Col gl-1) (see Figure 2.3 B). A No RT 

control was used to check for the presence of genomic DNA and a no cDNA control was 

used as well to check for the presence of DNA contamination in the PCR reagents.

 In the No RT control there was a band present, indicating some genomic 

contamination, but this band was much fainter than the others. Next, we checked the 
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FRO6RTF-3΄ and FRO6RTR-3΄ primer specificity, because FRO6 and FRO7 share 

approximately 92% sequence similarity. Of the 23 bases in the FRO6RTF-3΄ primer, 15 

bases match the corresponding FRO7 sequence and of the 23 bases in FRO6RTR-3΄ 

primer, 14 bases match the corresponding FRO7 sequence. FRO6RTF-3΄ and FRO6RTR-

3΄ were used with FRO7 cDNA and showed that these primers are able to amplify FRO7 

under the PCR conditions used. 

Next, we designed primers FRO6RTF (HINDIII) and FRO6RTR (HINDIII) for 

semi-quantitative RT-PCR to amplify a region of the cDNA that contains a HindIII site 

that is specific to FRO6. Because FRO6 and FRO7 share such high sequence similarity, it 

was important to cut at a site that is present in FRO6 but not FRO7, so that after digestion 

with HindIII, the actual identity of the transcript can be verified (see Figure 2.4 A). The 

RT-PCR product was digested with the restriction enzyme HindIII. Two bands of sizes 

100 bp and 200 bp correspond to the digested FRO6 transcript and the undigested 300 bp 

band corresponds to the FRO7 transcript (see Figure 2.4 B). When the amplified product 

was digested with HindIII, it was found that the product corresponded to both FRO6 and 

FRO7. This result confirmed that the primers amplified both FRO6 and FRO7 and also 

confirmed that the fro6-1 and fro6-2 lines express FRO6 transcript.  

In order to determine the function of FRO6 in the leaves, we conducted a ferric 

chelate reductase assay. There was a significantly less leaf ferric chelate reductase 

activity in fro6-1 mutants (see Figure 2.5). Additionally, there was a significantly less 

leaf ferric chelate reductase activity in fro6-2 mutants as well (see Figure 2.6).  In 

contrast, root ferric chelate reductase was not affected by loss of FRO6 (see Figure 2.7).  
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Since other FRO mutant lines display altered flowering time, flowering time of 

fro6-1 was measured. fro3 was used as a negative control, because it has been shown to 

have a delayed flowering time compared to WT. The fro6-1 mutants show a significantly 

faster flowering time than both WT and fro3 mutants when grown in high light conditions 

(see Figure 2.8).  

Root growth is used as a typical marker for a plant’s functions under conditions of 

metal stress. Under both Fe sufficient and Fe deficient conditions, there was no 

significant difference in the root length of the fro6-1 mutants versus WT (see Figure 2.9). 

Chlorophyll content is often affected by alterations in Fe homeostasis as Fe is required 

for chlorophyll synthesis. Additionally, chlorophyll requires Fe to function, so 

measurement of chlorophyll may indicate whether there is proper reduction and transport 

and delivery of Fe to the photosynthetic apparatus. Mutants of genes involved in Fe 

homeostasis have been shown to have compromised chlorophyll content or a chlorotic 

phenotype (including fro2, fit, irt1, and fro7). There was no significant difference in 

chlorophyll content of between WT and fro6-1or fro6-2 mutants (see Figure 2.10). 
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Figure 2.1: Genotyping of fro6-1 mutants 

A. Schematic of FRO6 gene and T-DNA insertion (triangle) as well as the locations of gene specific primers FRO6KOforward and 

FRO6KOreverse, and T-DNA specific primer lbb1 (adapted from Arabidopsis.org) (black boxes = exons, spaces = introns)  

(adapted from Arabidopsis.org)  (black boxes = exons)  

B. Agarose gel of PCR reaction using gene specific primers fro6KO forward and fro6KO reverse and T-DNA specific primer LBB1 

and gene specific primer fro6KO reverse. 
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Figure 2.2: Genotyping of fro6-2 mutants 

A. Schematic of FRO6 gene and T-DNA insertion (triangle) as well as the locations of gene specific primers FRO6KOforward and 

FRO6KOreverse, and T-DNA specific primer lbb1 (adapted from Arabidopsis.org) (black boxes = exons, spaces = introns)  

(adapted from Arabidopsis.org)  (black boxes = exons)  

B. Agarose gel of PCR reaction using gene specific primers fro6KO forward and fro6KO reverse and T-DNA specific primer LBB1 and gene 

specific primer fro6KO reverse. 
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Figure 2.3: Transcript Analysis 
A. Schematic Drawing of FRO6 gene (black boxes = exons) (adapted from Arabidopsis.org). 

B. RT-PCR transcript analysis of FRO6 transcript in Col gl-1 and fro6-1 mutant. Cycles 29, 32, 35for FRO6 transcript 

C. RT-PCR transcript analysis of Actin transcript in Col gl-1 and fro6-1 mutant. Cycles 23, 26, 29 for actin transcript 
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Figure 2.5: Leaf Disks Ferric Reductase Activity of fro6-1. Plants were grown on B5 medium for 2 weeks. Then transferred to soil for 2 weeks. 

Leaf Discs were prepared using the “Tape Sandwich” method and a hole punch. Leaf discs were then submerged in FCR assay solution and the 

absorbance at 562 nm was measured at 0, 20, 40, 60 minutes. Data was normalized by leaf disc weight. An asterisk indicates that there was a 

significant difference using a student’s t-Test for statistical analysis. 
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Figure 2.6: Leaf Disks Ferric Reductase Activity of fro6-2. Plants were grown on B5 medium for 2 weeks and then transferred to soil for 2 weeks. 

Leaf Discs were prepared using the “Tape Sandwich” method and a hole punch. Leaf discs were then submerged in FCR assay solution and the 

absorbance at 562 nm was measured at 0, 20, 40, 60 minutes. Data was normalized by leaf disc weight. An asterisk indicates that there was a 

significant difference using a student’s t-Test for statistical analysis. 

 



www.manaraa.com

   
 

 
 

4
1

 

 

 

Figure 2.7: Root Ferric Reductase Activity of Col gl-1 and fro6-1 grown on B5 medium for two weeks then transferred to Fe deficient and Fe 

sufficient medium. Bars represent standard error. Roots were then submerged in FCR assay solution and the absorbance at 562 nm was measured at 0, 

20, 40, 60 minutes. Data was normalized by leaf disc weight. 
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Figure 2.8: Flowering Time. Average number of leaves for each plant at time of bolting. Seeds were grown on soil and leaves were counted at 

flowering. WT and fro3 mutants used as controls. Bars represent standard error. An asterisk indicates that there was a significant difference using a 

student’s t-Test for statistical significance. 
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Figure 2.9: Average growth rate of roots grown on +/- Fe medium. Plants were grown on iron sufficient or iron deficient medium and 
measurements were taken every day for six days and averaged. Bars represent standard error.  
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Figure 2.10: A. Chlorophyll Content of Col gl-1 and fro6-1 grown on B5 medium for two weeks then transferred to Fe deficient and Fe sufficient 

medium. Bars represent standard error. An asterisk indicates that there was a significant difference using a student’s t-Test for statistical significance. 
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Discussion  

At this time, much is known about the localization and expression pattern of 

FRO6, but not much is known about the role it may play in iron uptake (Mukherjee et al., 

2006; Feng et al., 2006; Jeong et al., 2008). In protoplasts, FRO6 has been shown to 

localize to the plasma membrane (Jeong et al., 2008).  It is regulated in a light-dependent 

manner, with its promoter containing many light responsive elements (LREs), such as the 

I-box, GT1, and GATA motifs (Feng et al., 2006). While overexpression of AtFRO6 in 

transgenic tobacco plants resulted in a higher rate of ferric chelate reductase activity of 

leaves grown under iron sufficient and deficient conditions, there was no difference in 

ferric chelate reductase (FCR) activity of the roots of the transgenic plants compared to 

WT. Additionally, overexpression of FRO6 in tobacco plants, resulted in elevated Fe and 

chlorophyll content (Li et al., 2010). Thus we hypothesized that FRO6 is responsible for 

reducing apoplastic iron for transport across the plasma membrane in leaf cells.  

The results here indicate that FRO6 is involved in reduction of iron at the leaf 

PM. Ferric reductase activity is significantly reduced in the fro6-1 and fro6-2 mutants as 

compared to WT, suggesting that FRO6 functions in reduction of iron at the leaf PM (see 

Figure 2.4 and 2.5). However, despite the fact that the fro6-1 and fro6-2 mutants are 

homozygous (see Figures 2.1B and 2.2B), the lines show detectable FRO6 transcript (see 

Figure 2.3). It is possible that the transcript that is present in the fro6-1 and fro6-2 

mutants is aberrant in some way and does not encode a functional protein.  
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Our results indicate that there is no significant difference between the root ferric 

chelate reductase activity between fro6-1 and WT seedlings (see Figure 2.7). This is not 

surprising, because FRO6 is localized at the PM of leaf cells and is not expressed at all in 

the root PM. FRO2 is still present and should be able to continue effectively providing 

the iron that is needed for the whole plant. 

We also observed that fro6-1 mutants display faster flowering, in high light (see 

Figure 2.8). fro3 plants were used as control because they have been shown to flower 

slower than WT (Mukherjee, unpublished data).  The faster flowering phenotype only 

occurred under high light conditions when plants are under photo-oxidative stress. It is 

possible that increased apoplastic ferric iron may be participating in the Fenton reaction 

to produce toxic hydroxyl radicals. It has been shown that under extreme light conditions, 

plants cannot absorb the excess light during photosynthesis, which leads to a higher rate 

of ROS production (Golan, et al., 2006). 

Lastly, we did not observe a significant difference in the chlorophyll content of 

either fro6-1 and fro6-2 mutants and the WT plants (see Figure 2.10). Many proteins 

involved in photosynthesis require iron, including chlorophyll, cytochrome oxidase 

complex, heme, ferrodoxin, and iron-sulfur proteins (Li et al., 2010; Bang et al., 2008). It 

is possible that the plants maintain chlorophyll synthesis when Fe content is lower, but 

that some other Fe-containing proteins suffer. Thus, FRO6 may be important for 

providing Fe only for a certain subset of Fe proteins. This data along with the residual 

ferric reductase activity in leaf disks suggests that there is another pathway that acts 

redundantly with FRO6 to provide the iron needed for photosynthesis. There are a 

number of cytochromes in Arabidopsis that might act redundantly in leaf apoplastic iron 
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reduction. For example, the AtRBOHs are closely related to the FRO family or another 

FRO might act redundantly with FRO6 to reduce iron at the PM. The best candidate is 

FRO5, because it is expressed in the roots and shoots and it is localized to the PM (Wu et 

al., 2005; Mukherjee et al., 2006).  

Recently, FRO6 was shown to be 6.2 fold down regulated in the chl27-t mutant 

(Bang et al., 2008). The CHL27 protein is the membrane bound subunit of the aerobic 

cyclase in the chlorophyll biosynthesis pathway. It contains a “consensus D/EExxH motif 

specific to carboxylate-liganded di-iron-binding enzymes”(Bang et al., 2008) and so it is 

possible that FRO6 is providing the iron needed for this reaction (Moseley et al. 2000; 

Tottey et al. 2003; Bang et al, 2008). But there was no difference in chlorophyll content 

of fro6-1 mutants compared to WT, which suggests that FRO6 is not responsible for 

providing the Fe needed for CHL27 synthesis of chlorophyll. 

Future directions 

In the future, we plan to develop a FRO6 antibody to check FRO6 protein levels. 

Additionally, for full characterization of FRO6 function, we can complement the fro6-1 

and fro6-2 mutants with a copy of the FRO6 gene under the control of the endogenous 

promoter to check if it rescues the mutant phenotype. Although the fro6 mutants showed 

significantly reduced FCR, there is still some activity observed and this residual activity 

may be due to the activity of FRO3, FRO7 and FRO8, because creation of leaf discs 

exposes some of the plant’s cytoplasm to the assay solution. The residual activity also 

could indicate that FRO6 acts redundantly with another FRO. The most likely candidate 

is FRO5, because both FRO6 and FRO5 are localized to the PM and expressed in the 

shoots. In the Connolly lab, there are presently fro5fro6 mutants. Since FRO6 is thought 
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to provide iron for proteins of the photosynthetic apparatus, Blue Native Gel 

electrophoresis can be done to determine if components of the photosynthetic apparatus, 

such as PSI (Photosystem I), PSII (Photosystem II), and/or LHCI (Light Harvesting 

Complex I), are compromised in any way, because they are all large sinks for Fe (Jeong 

et al., 2008). 

In this thesis, I have presented one project that focuses on the reduction of Fe in 

leaves and characterized a mutant of FRO6, in order to determine its function in 

maintaining iron homeostasis. Our data indicates that AtFRO6 is responsible for reducing 

the apoplastic Fe that is needed for the transport across the leaf PM. This study enables a 

more thorough understanding of how plants maintain Fe equilibrium and thus will aide in 

the production of iron enriched plants to combat one of the leading issues facing the 

world today, iron deficiency anemia.
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